A quadratic Poisson Gel’fand-Kirillov problem in prime characteristic

نویسندگان

  • S Launois
  • C Lecoutre
چکیده

The quadratic Poisson Gel’fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is Poisson birationally equivalent to a Poisson affine space, i.e. to a polynomial algebra K[X1, . . . , Xn] with Poisson bracket defined by {Xi, Xj} = λijXiXj for some skew-symmetric matrix (λij) ∈ Mn(K). This problem was studied in [9] over a field of characteristic 0 by using a Poisson version of the deleting derivation homomorphism of Cauchon. In this paper, we study the quadratic Poisson Gel’fand-Kirillov problem over a field of arbitrary characteristic. In particular, we prove that the quadratic Poisson Gel’fand-Kirillov problem is satisfied for a large class of Poisson algebras arising as semiclassical limits of quantised coordinate rings. For, we introduce the concept of higher Poisson derivation which allows us to extend the Poisson version of the deleting derivation homomorphism from the characteristic 0 case to the case of arbitrary characteristic. When a torus is acting rationally by Poisson automorphisms on a Poisson polynomial algebra arising as the semiclassical limit of a quantised coordinate ring, we prove (under some technical assumptions) that quotients by Poisson prime torus-invariant ideals also satisfy the quadratic Poisson Gel’fand-Kirillov problem. In particular, we show that coordinate rings of determinantal varieties satisfy the quadratic Poisson Gel’fand-Kirillov problem. 2010 Mathematics subject classification: 17B63, 20G42

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dixmier-moeglin Equivalence and a Gel’fand-kirillov Problem for Poisson Polynomial Algebras

The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equiv...

متن کامل

2 4 M ay 2 00 7 THE DIXMIER - MOEGLIN EQUIVALENCE AND A GEL ’ FAND - KIRILLOV PROBLEM FOR POISSON POLYNOMIAL ALGEBRAS

The structure of Poisson polynomial algebras of the type obtained as semiclas-sical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equi...

متن کامل

PI DEGREE PARITY IN q-SKEW POLYNOMIAL RINGS

For k a field of arbitrary characteristic, and R a k-algebra, we show that the PI degree of an iterated skew polynomial ring R[x1; τ1, δ1] · · · [xn; τn, δn] agrees with the PI degree of R[x1; τ1] · · · [xn; τn] when each (τi, δi) satisfies a qi-skew relation for qi ∈ k and extends to a higher qi-skew τi-derivation. We confirm the quantum Gel’fand-Kirillov conjecture for various quantized coord...

متن کامل

Simple Associative Conformal Algebras of Linear Growth

We describe simple finitely generated associative conformal algebras of Gel’fand–Kirillov dimension one.

متن کامل

Polarized Associative Algebras1

Poisson superpair is a pair of Poisson superalgebra structures on a super commutative associative algebra, whose any linear combination is also a Poisson superalgebra structure. In this paper, we first construct certain linear and quadratic Poisson superpairs over a finite-dimensional or semi-finitely-filtered polarized Z2-graded associative algebra. Then we give a construction of certain Hamil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014